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The heat flow tells us about the origin 
of the Moon and its composition. 

Is the 2nd most important measurement 
on the International Lunar Network 
missions. 

For ILN need a low mass, low power 
robotic system to reach 3m

Background

J. Adams pdf
ILN SDT
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How to do it: 
• Step 1: Make a hole 
• Step 2: Deploy thermal sensors and measure

— Thermal conductivity and
— Thermal gradient

Lunar surface is a great insulator. Watch out for: 
• Thermal isolation between sensors 
• Thermal isolation from the lander

Apollo experience:
• A15: drill got ‘stuck’; 
• A16: astronaut tripped over the cables
• A17: success but it was a tough work!

Background to Heat Flow

Heat Flow = - k

Nagihara et al., LPSC, 2008
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Problem: Lunar regolith is dense!
• Regolith becomes very dense very quickly

• Relative density approaches 100%

• To make a hole: 

• Remove soil OR

• Crush and compact soil 
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Possible deployment methods

Not collapsed

Gelmi et al., 2007
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Need gas Blow the soil out using gas to create a 
hole

Wont reach 3m in 100% relative density soilMole pulls tether into the soil

Need vacuum rated percussive headPound the rod into the regolith and 
deploy sensors, pull the rod out

No thermal isolationDrill a probe into the regolith

Difficult to automateDrill a hollow, low conductivity casing, 
insert a probe into it (Apollo approach)

Difficult to automateDrill a hole, insert a heat probe into it.

ProblemMethod

Courtesy NASA
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Pneumatic Proboscis System
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Pneumatic Proboscis System

Components Deployment
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Deployment reel 
connected to an 
actuator

Gas Line

Cone with Gas 
Nozzle

Proboscis with 
RTDs

Pneumatic Proboscis System: Proof of Concept
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Pneumatic method of making a hole

Regulator Measured Gas Mass Flow Actual Avg. Depth 
Pressure Vol. Flow Rate Density Rate WOB Penetrated

Test# Cone Geom. Gas Type [PSI] [SCFM] [kg/m^3] [grams/sec.] [lbf.] [in.]
1 no hole n/a n/a n/a n/a n/a 100 <2
2 4 holes air 20 1.5 3 2.12 0 25
3 4 holes air 5 0.8 1.7 0.65 0 25
4 4 holes He 5 0.8 0.2 0.09 0 25

Set Up Future 
Vacuum 
Tests

Results

Results
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Tests  at Lunar G and in Vacuum
• Gas: Nitrogen @ < 9 psia

• Initial Soil Mass: 50g or 100 g

• Material: JSC1-a

• Chamber Pressure: ~ 1-4 torr

• Gravity: 1.67 and 9.8 m/s2

Courtesy NASA
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Pneumatic Test Results at 1/6th G and Vacuum
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• 1 gram of N2 at 7 psia can lift over 6000 g of JSC-1a

• In Hard Vacuum efficiency of 1:10 000 possible
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Percussive Heat 
Flow Probe
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Percussive Heat Flow Probe
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Thermal Sensors Deployment
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Testing thermal sensors
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Demonstrating percussive system in soil 
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Test 9: Cone 25 mm, Rod 22.2 mm Test 10: Cone 10mm, Rod 8 mm Test 11: Cone 25 mm, Rod 22.2 mm
Test 12: Rone 25 mm, Rod 22.2 mm Test 13: Cone 25 mm, Rod 14.3 mm Test 14: Cone 10 mm, Rod 8 mm
Test 15: Cone 25 mm, Rod 14.3 mm Test 16: Cone 10 mm, Rod 8 mm Test 17: Cone 25 mm, Rod 21.3 mm
Test 18: Cone 25 mm, Rod 21.3 mm

• Used JSC-1a at 1.9 g/cc (Dr >90%)

• 1 meter reached in 1-3 minutes
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Enabling Technology: Vacuum Percussive Head
• Vacuum rated Percussive head was successfully life tested in vacuum 

for over 2.5 hrs
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Percussive system as a geotechnical tool!

8/14/2008 - Site #4
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• Rate of penetration can indicate 
geotechnical soil properties: 
bearing strength and density

• This information can be linked to 
heat flow data to improve models
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More in the upcoming book
Chapter 1: Introduction

Chapter 2: Principles of Drilling and 
Excavation 

Chapter 3: Ground Drilling and Excavation

Chapter 4: Ice Drilling and Coring 

Chapter 5: Sea Floor drilling 

Chapter 6: Extraterrestrial Drilling and 
Excavation 

Chapter 7: Planetary sample acquisition, 
handling and processing

Chapter 8: Instruments for In-Situ Sample 
Analysis

Chapter 9: Contamination and Planetary 
protection

Chapter 10: Conclusions -


